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Abstract

The paper describes the main concepts behind the tool called WPPT (Wind Power Pre-
diction Tool) for on-line prediction of the wind power production for the next few days.
WPPT can be used for predicting the wind power for single wind farms, a group of on-
shore or off-shore wind farms, and for larger regions like the Western part of Denmark.

Some general aspects of setting up models for the variation of wind power production
with the purpose of forecasting wind power based on meteorological forecasts are dis-
cussed. This forms the basis for a description of the most important models used in WPPT.
For off-shore wind farms the dynamical characteristics of a typical large wind power pro-
duction can change rather dramatically within few minutes. It is argued that it is very
important that any prediction system also supplies information about the uncertainty of the
prediction.
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1 Introduction

Large off-shore wind farms may contribute seriously to the stability or instability of power
systems. The passage of a thunderstorm or a low pressure front may change the dynamical
characteristics of the local wind regime considerably within few minutes, and, hence it is very
important to be able to reliably predict the wind power also on a rather short time scale.

The Wind Power Prediction Tool (WPPT) [11, 13, 12] can be configured in many ways. The
system can be set up so the focus is on a single large off-shore wind farm, or on a combination
of some off-shore and on-shore wind farms. WPPT (Wind Power Prediction Tool) is a system
for forecasting the wind power for up to, say 48 hours ahead depending on the horizon of the
MET forecasts, with a resolution of typically 30 minutes.

The computer system run at a number of locations. The system uses on-line meteorological
forecasts together with on-line measurements in order to continuously update the underlying
models. WPPT is one of the products for wind power prediction covered by the collaboration
between Risø National Laboratory and Informatics & Mathematical Modelling. This collabo-
ration also covers the Prediktor system [11].

Section 2 briefly describes the computer system. In Section 3 the preconditions and some
desirable properties of such a computer system are described, these set the basis for the methods
used which are outlined in the subsequent sections. Section 4 and 5 describe details about the
models used today in WPPT, and examples of configurations of WPPT showing its flexibility is
shown in Section 6. An example of providing information about the uncertainty in predictions
for an off-shore wind farm is given in Section 7. Finally, in Section 8 we conclude on the paper.

2 Overview of the Computer System

The computer system works on-line. By on-line we understand that the system continuously
receive the most recent information and updates the underlying models for generating the fore-
casts periodically (typically every 30 minutes). The system have been coded in C/C++/Java and
runs under Linux, Unix and Windows.

WPPT is a system for forecasting the wind power production in relatively large geographical
regions and for individual wind farms. The forecasts for the individual wind farms are upscaled
with the purpose of generating regional forecasts, cf. Section 4 and 5.

The wind turbines may be grouped into a region according to geographical similarities or
legislation governing the connection. In Denmark wind turbines have been grouped in priori-
tized production and non-prioritized production.

In Fig. 1 an overview of the information flow of the forecasting system is depicted. Note that
measured values of the dependent variable (e.g. wind power production) is used as input to the
forecasting system. The output of WPPT also includes information regarding the uncertainty of
the forecasts. This is very important for off-shore wind farms where the uncertainty is known
to vary from time to time.
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Figure 1: Overview of the information flow of the WPPT forecasting system. The dashed line
on the plot of the forecast indicates the time at which the forecast is generated. The climate
measurements are optional.

3 System Considerations

The main information which is supplied to the computer system is indicated in Fig. 1. Fur-
thermore, information from the physical system, such as the fraction of wind turbines actually
running i.e. not being out for maintenance or other reasons, and time/calendar information is
supplied to the computer system.

Except for the meteorological forecasts, typically the information can be sampled with the
frequency required for the purpose of being able to update the forecasts with the desired fre-
quency. However, the meteorological forecasts are not updated very frequently, nor is the reso-
lution very high [14] and interpolation is used to circumvent this.

Since the physical system considered is non-stationary it is a precondition for the computer
system to be able to adapt to changes in the physical system. A typical example is changes in
the roughness; e.g. due to the annual variation or new obstacles near the wind turbines. Also
changes in the NWP models, the population of wind turbine, and dirty blades call for the system
to be able automatically to adapt to changes. The computer system should detect this and adapt
to the new situation without human intervention.

In the paper [10] simulations and theoretical consideration have be used to prove that the
following general considerations has to be taking into account when constructing a system for
wind power prediction:

• As input variable to a prediction model the MET forecasts of the wind speed and the wind
direction must be used. In fact for linear models it is shown in [10] that it is generally
better to use estimates based on the forecasts of the explanatory variables rather than on
the actual explanatory variables

• The principle of tracking changes over time is that old information is disregarded as new
information become available. Since long periods without high winds often occur it is
crucial that the procedure for tracking the relationship between the meteorological fore-
cast and the wind power production only disregards old information near wind speeds
actually occurring. Hence a dedicated adaptive scheme for parameter estimation must
be used. In WPPT a non-parametric model for the power curve is used, which allow
for a strait forward approach to only disregard old information for wind speeds actually
occurring – see [9, 14].

• The procedure outlined assumes that the dependent variable is available on-line. For
wind power production the values are available on-line for certain reference wind farms
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while data for smaller farms and individual turbines typically is available only trough the
total wind power production of sub-areas, which typically is available with a considerable
time-delay (say a month). Hence the upscaling to regional forecasts is important.

4 Models in WPPT

The WPPT modelling system described in the following calculates predictions of the available
wind power from wind turbines in a region. For a larger region this is done by separating the
region into a number of sub-areas. Wind power predictions are then calculated for each sub-area
and hereafter summarized to get a prediction for the total region.
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Figure 2: Overview of a model structure in WPPT. Two different predictions are calculated
for the wind power production in a region: In the left model branch the wind farm models,
PP

wf
i,j , are used to calculate power predictions for the reference wind farms in sub-area i. The

predictions for the reference wind farms in sub-area i are summarized to p̂
wf
i,1 , which hereafter

is upscaled by the upscaling model PP ar
i,1 to a power prediction, p̂ar

i,1, for all wind turbines in the
sub-area. The predictions for the sub-areas are then summarized to get the power prediction of
the left model branch for the total region, p̂to

1
. In the right model branch power predictions of

the power production in sub-area i, p̂ar
i,2, are calculated directly by the area model PP ar

i,2 . The
predictions for the sub-areas are then summarized to get the power prediction of the right model
branch for the total region, p̂to

2
. The final power prediction for the region, p̂to, is calculated by

model p̂to as a weighted average of the predictions from the two model branches.

The predictions are calculated using on-line production data from a number of wind farms in
the area (reference wind farms), off-line production data for the remaining wind turbines in the
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area and numerical weather predictions of wind speed and wind direction covering the area. The
predictions covers a horizon corresponding to the prediction horizon of the numerical weather
predictions hours – typical from 0 to approximately 48 hours ahead in time. The time resolution
of the predictions can be chosen freely but a reasonable choice for the longer prediction horizons
is to use the same time resolution as the numerical weather predictions.

All possible models in WPPT is most easily illustrated by a two branch as in Figure 2.

• In the left model branch predictions of wind power are calculated for a number of ref-
erence wind farm using on-line measurements of power production as well as numerical
weather predictions as input. The predictions from the reference wind farms in a sub-area
are summarized and hereafter upscaled to get the prediction of power production of all
wind turbines in the sub-area. This model branch takes advantage of the auto-correlation
which is present in the power production for prediction horizons less than approximately
12 hours.

• The right model branch predicts the power production in a sub-area explicitly by using
a model linking off-line measurements of total power production in the sub-area to the
numerical weather predictions. This model branch takes advantage of the smooth proper-
ties of the total production as well as the fact that the numerical weather models perform
well in predicting the weather patterns but less well in predicting the local weather at a
particular wind farm.

For both model branches the power prediction for the total region is calculated as a sum of
the predictions for the sub-areas. The final prediction of the wind power production for the total
region is then calculated as a weighted average of the predictions from the model two branches.

5 Prediction models

Conditional parametric models are used to describe the relationship between observed power
production in wind farms or areas and meteorological forecasts of wind speed and wind direc-
tion (the power curve). These relationships are difficult to parameterize explicitly, but can, as
it is shown in [11], readily be captured by conditional parametric models. The dynamic rela-
tionship between observed production and predicted production from the (static) power curve
models are described using a set of linear k-step predictions models, which are estimated re-
cursively and adaptively as described in [2] and [9], whereas the model structure in the k-step
models is identified in [4] and [5].

5.1 The wind farm model (PP
wf
i,j )

The wind farm model uses wind direction dependent power curves in the transformation of
forecasted wind speed and wind direction to power. The prediction model for the jth wind farm
in the ith sub-area is given as

p̂
pc
i,j(t + k|t) = f(wwf

i,j (t + k), θwf
i,j (t + k), k)

p̂
wf
i,j (t + k|t) = a1p

wf
i,j (t) + a2p

wf
i,j (t − 1) + bp̂

pc
i,j(t + k|t) +
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where p̂
wf
i,j (t + k|t) is the predicted power for time t + k calculated at time t, and p̂

pc
i,j(t + k|t) is

the power predicted by the direction dependent power curve. w
wf
i,j (t+k) and θ

wf
i,j (t+k) are local

forecasts of wind speed and wind direction, respectively, and a., b, c.
., and m are time-varying

model parameters to be estimated. The function h24 simply transforms the running time onto
the time of day.

The wind farm model takes advantage of the auto-correlation which is present in the power
production for prediction horizons less than approximately 12 hours.

The choice of model order and input variables for each prediction horizon is described in
[4].

In [11] the performance of the proposed model is evaluated for six different wind farms -
five in Denmark and one from the Zaragoza region in Spain (La Muela). The wind farm at La
Muela is investigated further in [6] and [7], where the performance of the wind farm model is
evaluated for various wind forecasts.

5.2 The upscaling model (PP
ar
i,1)

The predicted power production in sub-area i is calculated by multiplying the summarized
power predictions for the wind farms in the sub-area by a upscaling function, which depends on
area forecasts of wind speed and wind direction. The model is given as

p̂ar
i,1(t + k|t) =

b(war
i (t + k), θar

i (t + k), k)
∑

j

p̂
wf
i,j (t + k) (2)

where war
i (t+k) and θar

i (t+k) are area forecasts of wind speed and wind direction, respectively,
and b is a smooth time-varying function to be estimated.

5.3 The area model (PP
ar
i,2)

The area model transforms area forecasts of wind speed and wind direction to power in a way
similar to the wind farm power curve model by explicitly linking weather forecasts for the area
to off-line observations of the power production in the area. For sub-area i the model is given
as

p̂ar
i,2(t + k|t) = f(war

i (t + k), θar
i (t + k), k). (3)

where f is a smooth time-varying function to be estimated.
This model takes advantage of the smooth properties of summarized power productions and

the fact that the numerical weather models perform well in predicting the weather patterns but
less well in predicting the local weather at a particular wind farm.

5.4 The total model (PP
to)

The prediction of the total power production in the region is calculated as a combined forecast
using the total predictions from the two model branches in Figure 2. The prediction is calculated
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as a prediction horizon dependent weighted average of the power predictions for the two model
branches using Root Mean Square (RMS) as weighting criterion. The model is given as

p̂to(t + k|t) = b1(k)p̂ar
1

(t + k|t) + b2(k)p̂ar
2

(t + k|t) (4)

where p̂ar
1

(t+k) and p̂ar
1

(t+k) are the power predictions for model branch 1 and 2, respectively,
and b1 and b2 are smooth time-varying functions to be estimated.

The predictions from the two model branches are closely correlated especially for the longer
prediction horizons. Thus a regularized estimation procedure must be used to ensure stable
estimates of the b1 and b2 functions. Here Ridge Regression [1] has been used.

6 Some possible configurations of WPPT

WPPT is very flexible, since the system can be used for a single wind farm, for a collection
of wind farms, for small and large regions. It is able to simultaneously to provide a forecast
for single wind farms and large regions. This section describes a couple of possibilities for the
configuration of WPPT.

Depending on the configuration WPPT requires input from the following sources:

• On-line measurements of wind power production from some wind farms (update interval,
say, between 5 min. and 1 hr.).

• Aggregated high resolution energy off-line readings from nearly all wind turbines in the
groups/regions defined (updated with a delay of upto, say, 1 month).

• Forecasts of wind speed and wind direction covering wind farms and sub-areas (horizon
0–48 hours, say, updated 1-4 times a day)

• Local climate measurements (optional - mostly used for error detection).

6.1 Example 1. Only off-line data

This configuration, which is shown in Figure 3, is used by a large TSO. The following charac-
terizes the setup:

• No online data enter the models.

• A large number of wind farms and stand-alone wind turbines.

• Frequent changes in the population of wind turbines as old turbines are decommissioned
and replaced by new and larger machines.

• Off-line wind power production data with a resolution of 15 min. are available for more
than 99% of the wind turbines in the area. The data is released with a delay of 3-5 weeks.
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Figure 3: Configuration Example No. 1. Only off-line production data and NWP data are used.

6.2 Example 2. Both on-line and off-line data

Again this configuration is used by a large TSO. The setup, which is shown in Figure 4, has the
following characteristics:

• A large number of wind farms and stand-alone wind turbines.

• Frequent changes in the wind turbine population.

• Off-line production data with a resolution of 15 min. are available for more than 99% of
the wind turbines in the area.

• On-line data for a number of wind farms are available (about 30 pct.). The number of
on-line wind farms increases quite frequently.

In this example the TSO wants forecasts for both a collections of wind turbines and for sub-
regions. This information is used for instance for transmission purposes. Also a prediction of
the total production in the area is supplied.

6.3 Performance example

This case study corresponds to the first configuration example, i.e. no on-line data is used.
The period is from June 2002 to May 2003 (both month included). The power data is

available (off-line - up to one month delay) every 15 minutes. The NWP data is gridded values
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Figure 4: Configuration Example No. 2.

of 10 m wind speed and direction covering the Eltra area and updated four times a day. The
prediction range is from 0 to 48 hours with a one hour resolution. The area wind speed and
direction is calculated as the geographical mean of the gridded NWP values.

In Figure 5 the performance of WPPT is compared to the performance of the naive predictor.
The performance measure used is the normalized Root Mean Squared Error (NRMSE), see [3],
which is defined as

NRMSE(k) =

√

√

√

√

∑N
t=1

(ε(t + k|t))2

N − p
. (5)

where ε(t + k|t) is the normalized prediction error

ε(t + k|t) =
1

pinst

(p(t + k) − p̂(t + k|t)), (6)

and where pinst is the installed capacity. Both systematic and random errors contribute to the
NRMSE criterion.

It is seen that the performance of WPPT in general is much better than the performance of
the naive predictor. However, for very small horizons the performance of the naive prediction
is the best. This is due to the fact that this example relates to configuration Example 1, where
no on-line data is used (as opposed to the naive predictor where on-line data is used). If the
configuration changes to Example 2, i.e. including on-line data, the values for WPPT will
improve, and for all horizons the value will be better than for the naive prediction.
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Figure 5: Performance comparison of WPPT (lower curve) and the naive predictor.

7 Confidence intervals for the predictions

Today a lot of tools and methods for predicting wind power exist; but only a few tools consider
the problem of reliably estimating the uncertainty of the wind power prediction.

The developers behind WPPT have recently developed a method using MET ensembles
typically from either ECMWF or NCEP as the input to a model which uses the information
embedded in the ensembles to obtain reliable estimates of the quantiles of the future values of
the wind energy. An example from the small off-shore wind farm Tunø near the East coast of
Jutland is shown in Figure 6. The method is further described in [8].

It is clearly seen in the figure that occasionally the prediction is rather accurate, whereas for
other periods the prediction is encumbered with a large uncertainty. This is due to a varying
predictability of the weather situation.

8 Conclusion

The preconditions and methods for short term forecasts of wind power are outlined in the paper.
It is argued that the uncertainty of the meteorological forecasts should affect the models being
used.

A tool, called WPPT, for wind power predictions is briefly described. WPPT can easily be
configured to use a mixture of off-line and on-line data. Furthermore, WPPT can be used to
provide simultaneous forecasts for wind farms, and smaller and larger regions.

Two examples of actually used configurations of WPPT are described. For the most simple
setup of WPPT the performance of system is exemplified.

Finally, it is argued that it is important that wind power predictions are supplied with some
information regarding how reliable the prediction is. An example of reliable wind power fore-
casts for an off-shore wind farm is shown.
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Figure 6: Ensemble based predictions with reliable confidence intervals for an off-shore wind
farm. The smooth curve in the middle is the median of the forecasts, and the confidence interval
shown is defined by the 25% and 75% quantile.
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